Eighth Semester B.E. Degree Examination, June / July 2013 **Tribology**

Time: 3 hrs. Max. Marks: 100

> Note: 1. Answer any FIVE full questions, selecting atleast TWO question from each part. 2. Use of Tribology data handbook is permitted.

PART - A

a. State and explain the Newton's law of viscous flow.

(06 Marks)

b. Derive the Hagen – Poiseuille law. Also state the assumptions made in the derivation.

(10 Marks)

- c. An oil supply line 1.2m long having an internal diameter 6.25mm and delivery 6×10^{-5} m³/s of oil having a viscosity of 0.0555 Pa S. Calculate the pressure drop in the supply line and energy required in forcing the oil through the supply line against viscous friction.
- a. Derive the Petroff's equation for a lightly loaded journal bearing.

(08 Marks)

- b. A lightly loaded journal bearing has the following specification: Diameter of Journal = 50mm; Bearing length = 80mm; Diametral clearance ratio = 0.002 Radial load = 750N; Viscosity of lubricant = 10Cp; Speed = 4000rpm. Determine

 - i) Frictional torque on journal ii) Co efficient of friction
- iii) Power loss. (12 Marks)
- Derive the Reynold's equation in two dimensions. Also state the assumptions. 3 (20 Marks)
- 4 Derive an analytical expression for pressure distribution along an idealized plane slider bearing with a fixed shoe. (20 Marks)

PART - B

5 a. Write a note on thermal equilibrium of journal bearing.

(10 Marks)

b. A full journal bearing with circumferential oil groove is lubricated under pressure and has the following specifications:

Journal diameter = 62.5mm; Total length of bearing = 125mm; Width of circumferential groove = 6.25mm; Radial clearance = 0.04375mm; Effective oil temperature = 100^{0} C; Lubricating oil = SAE20; Minimum oil film thickness = 0.004375mm.

Determine the inlet pressure required in order to control the bearing temperature. The rate of oil flow through the bearing is to be 4925mm³/s. (10 Marks)

6 a. Derive an expression for the rate of flow of the oil through a hydrostatic step bearing.

(10 Marks)

b. A hydrostatic step bearing for a turbine rotor has the following specifications: Diameter of shaft = 150mm; Diameter of pocket = 100mm; Vertical thrust of bearing = 70kN; Shaft speed = 1000 rpm; Viscosity of lubricant under operating condition = 0.025 fas - sec; Desirable oil film thickness = 0.125mm. Determine i) Rate of oil flow through the bearing ii) Power loss due to viscous friction iii) co-efficient of friction.

06ME831

7	a.	Enlist the properties of good bearing materials.	(05 Marks)
	b.	List out the commonly used bearing materials.	(05 Marks)
	c.	Give the classification of wear. Discuss in brief.	(10 Marks)

Write short notes on wear of: i) Polymers ii) Ceramic materials. (10 Marks)

b. What are the technologies involved in surface engineering to improve tribological behavoiur of components. (10 Marks)